Powder metallurgy HSS

CHEMICAL COMPOSITION

G	Ğ	Me	W	Ą
1.40	4.2	5.0	5.8	4.1

STANDARDS

- Europe: HS 6-5-4
- USA: M4

DELIVERY HARDNESS

Soft annealed Cold drawn

max. 260 HB max. 300 HB

DESCRIPTION

M4 PM is a high vanadium alloyed grade with high wear resistance and toughness suitable for cold work applications.

APPLICATIONS

- Milling cutters **Punches** Taps
- Dies
- Broaches Rolls
- Rotating multi-edge cutting tools

FORM SUPPLIED

- Coils
- Forged blanks
- Round bars
- Flat & square bars

Available surface conditions : drawn, ground, hot worked, peeled, rough machined, hot rolled.

HEAT TREATMENT

- Soft annealing in a protective atmosphere at 1560-1650°F for 3 hours, followed by slow cooling at 20°F/h down to 1290°F, then air cooling.
- Stress-relieving at 1110°F to 1290°F for approximately 2 hours, slow cooling down to 930°F.
- Hardening in а protective atmosphere with pre-heating in 2 steps at 840-930°F and 1560-1650°F and austenitising at a temperature suitable for chosen working hardness. Cooling down to 100-120°F.

Tempering at 1040°F three times for at least 1 hour each time. Cooling to room temperature (77°F) between temperings.

GUIDELINES FOR HARDENING

Tempering temperature

Hardness after hardening, quenching and tempering 3x1 hour

PROCESSING

- M4 PM can be worked as follows :
 - machining (grinding, turning, milling)
- polishing
- plastic forming
- electrical discharge machining
- welding (special procedure including
- preheating and filler materials of base material composition).

GRINDING

During grinding, local heating of the surface, which may alter the temper, must be avoided. Grinding wheel makers can furnish advice on the choice of grinding wheels.

SURFACE TREATMENT

The steel grade is a good substrate material for PVD and CVD coating. If nitriding is demanded a small zone of 2-15 µm is recommended. The steel grade can also be steam-tempered if so desired.

Cincinnati Tool Steel Co.

PROPERTIES

PHYSICAL PROPERTIES

		Temperature		
		68°F	750°F	1110°F
Density Ib/in ³ (1)	0.29	0.29	0.28
Modulus of				
elasticity psi (2	2)	3.5x10 ⁷	3.1 x10 ⁷	2.7 x10 ⁷
Specific heat				
Btu/lb °F (2)		0.10	0.12	0.14

(1)=Soft annealed

(2)=Hardened 2155°F and tempered 1040°F, 3x1 hour

IMPACT STRENGTH

Original dimension 1/3x1/2 mm Tempering 3 x 1 hour at 1040° F Unnotched test piece 9/32 x13/32 x 25/32 inch

4-POINT BEND STRENGTH

Hardening temperature in °F

Original dimension \oslash 1/4 inch Tempering 3 x 1 hour at 1040° F Dimension of test piece \oslash 1/5 inch

 $Rmb = Ultimate \ bend \ strength \\ in \ kN/mm^2$

Reb = Bend yield strength in kN/mm²

Tot. work = Total work in Nm

COMPRESSION YIELD STRESS

Rc 0,2 kN/mm²

Test piece : hour glass with 2/5 inch \varnothing waist

COMPARATIVE PROPERTIES

